

Supporting Information (SI) Appendix

for

Education Under SSP Manuscript (Title not yet finalized)

Table of Contents

1. International Futures Model	2
2. IFs Education Model	2
3. Data Used in the IFs Education Model	3
4. Student Flow Model	6
5. Financial Flow Model.....	7
6. Educational Attainment Model	8
7. Scenario Development	10
8. Replication.....	11
References	12
Figures	13
Tables	19

1 This document outlines our approach to projecting educational schooling and adult attainment using the
2 International Futures (IFs) model, an integrated assessment tool covering social, economic, and
3 environmental variables across 188 countries. The IFs education model forecasts enrollment, graduation
4 rates, and attainment levels, deriving global and regional estimates from population-weighted country
5 projections.

6 We begin with an overview of the IFs modeling system, followed by a breakdown of the education model's
7 key components. We then describe the historical data used for the model, followed by detailed sections
8 on its main components: schooling flows, financial flows, and educational attainment. Next, we outline our
9 scenario development process and the underlying logic. Finally, we provide instructions for replicating the
10 model and scenarios. The IFs Model Wiki (1) offers a more extensive description of the modeling
11 methodology, model coverage, and data sources, along with illustrative diagrams.

12

13 1. International Futures Model

14 International Futures (IFs) is a freely available integrated modeling system designed for long-term global,
15 regional, and national projections across demographics, economics, education, energy, environment,
16 health, infrastructure, and governance. It's hard-linked, discipline-specific sub-models advance recursively
17 in annual time steps through 2100.

18 These interconnected sub-models (Figure S1) influence and respond to each other through analytical
19 equations and algorithms based on historical data, capturing structural, accounting, and flow dynamics.
20 While most interactions occur within national boundaries, global processes like trade and migration are
21 handled by default through a pooled approach, but bilaterally as an option.

22 IFs produces a comprehensive "base case" projection, a data-driven reference scenario that forecasts
23 long-term trends based on historical patterns, current policies, and structural relationships. This serves as
24 a reference for exploring alternative scenarios and policy interventions, allowing users to modify
25 parameters and assess potential impacts.

26 Relative to other Integrated Assessment Models (IAMs), IFs stands out for its broader issue coverage,
27 user-friendly interface, and policy adaptability. Its strength lies in evaluating the combined effects of policy
28 choices, capturing dynamic feedback loops across its component models.

29 For example, the economic and demographic sub-models are tightly linked to the education model,
30 reflecting how educational investments influence economic growth and demographic trends and how they
31 in turn affect education. This integrated approach allows IFs to analyze effects of policy decisions on
32 schooling, workforce productivity, and long-term development.

33 2. IFs Education Model

34 An integrated modeling approach requires a comprehensive representation of the system and a unified
35 analytical framework to capture dynamic interactions that shape and are shaped by the system's key
36 outcomes. However, most global education models (2–6), whether they rely on statistical or structural
37 projection methods, have relatively limited interactions with other socio-economic factors. In contrast, IFs
38 embeds education within a larger system of interconnected demographic, economic, and governance
39 factors, ensuring dynamic interactions and feedback loops. Two of its key strengths lie in endogenizing
40 the interactions between education and broader society and using a full stock-and-flow system that tracks
41 students from entry into and progression through school to their long-term educational attainment in
42 adulthood and the workforce.

43 IFs recognizes that education demand and supply are shaped by economic growth, labor market needs,
44 and public finance constraints. A growing economy increases demand for skilled workers, reinforcing
45 education investment, while government budget limitations, especially in lower-income countries, restrict
46 early-stage education expansion. Education costs—primarily teacher compensations (7)—are modeled to
47 increase with per capita income, reflecting rising labor opportunity costs. Enrollment and funding
48 demands are linked to age-specific population projections from the IFs cohort-component population
49 model. At the same time, IFs captures how education feeds back into the economy, as a more educated
50 workforce drives productivity, boosts growth and government revenue, and enables further investment in
51 education. These two-way relationships (Figure S2) ensure that education is not analyzed in isolation but
52 as part of a dynamic, evolving system that shapes and is shaped by broader long-term development
53 trajectories.

54 Another key feature of the IFs education model is its integrated stock-and-flow accounting system. It
55 simultaneously tracks student movement through the schooling system (flows) and adult educational
56 attainment (stocks). Unlike models that statistically estimate adult educational attainment, IFs explicitly
57 models how students enter, progress, graduate, or drop out, ensuring a direct link between schooling
58 experiences and long-term educational outcomes. The model dynamically projects intake, survival,
59 enrollment, and completion rates, ensuring that cohort movements align with educational progression
60 from elementary entry through adulthood. By linking student flows to adult educational attainment and
61 integrating attainment with the broader economy and demography, IFs provides a structurally grounded
62 and policy-sensitive projection of educational attainment. Its ability to capture the interconnected nature of
63 education, economic development, and demographic change makes the IFs education model a powerful
64 tool for long-term planning. Further details on the data used to initialize the model, along with the key
65 dynamics of the schooling flow and attainment model, are provided in the following sections.

66

67 **3. Data Used in the IFs Education Model**

68 The structure of the education model relies critically on data availability, the imputation of missing values,
69 and the reconciliation of data from multiple series, whether from the same or different sources. IFs
70 prepares data through a dedicated “preprocessor,” which constructs base-year values—currently for
71 2020. This preprocessor reads from the IFs historical database, where variables are organized in a
72 country-year format, and applies imputation methods and consistency checks to generate a complete
73 dataset for all 188 modeled countries. Once this initialization is complete, the model can be run to
74 produce the Base Case scenario. The IFs interface also supports the specification and analysis of
75 alternative scenarios, all anchored in the same 2020 base-year values. The education model uses
76 historical data to initialize three key variable categories: student flow rates (e.g., entrance or graduation),
77 financial data (e.g., costs, spending), and adult educational attainment. This section describes the data
78 sources and preprocessing steps; Sections 4 and 5 explain how the data feed into the student flow and
79 financing models, while Section 6 addresses the progression of educational attainment into adulthood.

80

81 **Data Sources**

82 The education model data are sourced from recognized repositories of global education statistics.
83 Student and financial flow data are primarily obtained from UNESCO Institute for Statistics (UIS) (8), while
84 educational attainment data come from the Wittgenstein Centre (WIC) (9, 10). Table S1 summarizes the
85 data sources for all education variables as well as other variables used in initializing the education
86 module of the IFs model.

87 To ensure comparability across countries, the UNESCO Institute for Statistics (UIS) follows the
88 International Standard Classification of Education's 2011 framework, ISCED 2011 (11). The IFs education
89 model incorporates four education levels, consistently organized for all countries in the UIS database:
90 Primary (ISCED level 1), Lower Secondary (ISCED level 2), Upper Secondary (ISCED level 3), and
91 Tertiary (first-degree programs of ISCED levels 5, 6 or 7). The UIS database provides country-specific
92 values for the age of entry and the duration of each education level up through upper secondary, which
93 IFs implements. To simplify variation in program length both within and across countries, IFs represents
94 the full duration of tertiary education as five years. This age mapping is essential for computing schooling
95 flow rates, many of which are defined as a share of the relevant age-group population. For example,
96 enrollment at a given level is calculated as the number of children enrolled expressed as a percentage of
97 the total population at the appropriate schooling age, from entry to the final grade.

98 The UIS data acknowledge that, in practice, children may start school late, repeat grades, or take breaks.
99 To account for misalignment between age and grade/schooling level, UIS provides two types of flow rates
100 where applicable.

- 101 • Gross rates include all pupils with the defined schooling attribute, even those older or younger
102 than the expected age, divided by the population at the expected age, and can exceed 100%.
- 103 • Net rates, in contrast, count only those students, entrants, or graduates who are of the expected
104 age for a given level, divided by the population at the expected age.

105 IFs projects both net and gross rates at the elementary level to estimate the large number of school-aged
106 children who remain out of school in many developing countries. Over time, gross rates tend to converge
107 toward net rates as of-age enrollment rates rise.

108 For all other schooling levels, IFs projects only gross rates, as they better reflect system capacity and
109 demand. Not all student flow rates follow this gross-net distinction. For example, the survival rate, which is
110 defined as the share of entrants who reach a certain grade, is inherently limited to 100%.

111 The grade distribution of students is initialized in two ways: either using grade-specific student flow data,
112 or—when such data are unavailable, unreliable, or have limited coverage—using more aggregate, level-
113 wide flow rates combined with assumptions about their distribution across grades. For primary and lower
114 secondary levels, grade-specific enrollment counts from UIS are combined with single-year population
115 estimates from the UN Population Division's (UNPD) World Population Prospect (12) to calculate
116 enrollment rates by grade. UIS also provides grade-specific dropout rates for these levels, which the IFs
117 education model incorporates.

118 For upper secondary and tertiary levels, entrance, progression, and exit flow rates are used to compute
119 the initial-year grade distribution through a distribution algorithm. This algorithm makes a simplifying
120 assumption: that current students progressed through the level with current entrance and graduation
121 rates, and that dropouts were evenly distributed across the intervening grades.

122 UIS (8) compiles and publishes financial flow data on education spending per student and total funding at
123 each level, as well as for the education sector as a whole. These data are sourced primarily from UIS, but
124 also from the World Bank's World Development Indicators (WDI) (13) and Education Statistics (EdStats)
125 (14), both of which derive their data from UIS sources (8). The GDP data in IFs come from the World
126 Economic Outlook database (15).

127 While IFs draws on both the Wittgenstein Centre for Demography and Global Human Capital (WIC) and
128 Barro-Lee (B-L) (16) data for educational attainment, this paper uses only WIC data—resorting to Barro-
129 Lee data solely to fill in values for countries missing from the WIC dataset (9, 10).

130 **Data Preprocessing in IFs Model**

131 While UIS provides good data coverage, gaps remain in both student flow and financial data. In contrast,
132 the attainment data has nearly complete geographic coverage. To ensure base-year data are available for
133 all variables and all countries, IFs uses a systematic imputation process to fill missing values. The same
134 methods are applied when initializing a given variable, though the set of imputation techniques may vary
135 based on disaggregation level (e.g., grade vs. schooling level), data availability, reliability, country
136 coverage, and time span. The techniques include closest-year substitution, cross-sectional estimation,
137 longitudinal extrapolation, or full-flow reconstruction with available data. The model pre-processor ensures
138 internal consistency between observed and imputed data, and across student flows at the same or
139 contiguous levels for each country. These data imputation and reconciliation methods are described
140 below.

141 The education pre-processor begins initialization by reading base-year values for each variable for all
142 countries from the historical IFs database, which compiles data from the sources listed in Table 1. When a
143 data value for the base year (2020 in IFs 8.26) is missing, the imputation first attempts to use the value
144 from the closest available year within a defined window, typically five years from the base year.

145 If no recent data exist, missing values are estimated in most cases using cross-sectional relationships
146 typically derived from the most recent data available for all countries, with the variable being initialized
147 regressed against an indicator of the country's level of development and educational demand, most often
148 GDP per capita at purchasing power parity (GDPPCPPP). GDPPCPPP is an essential IFs data series
149 with full country coverage for the base year and a sufficiently long preceding period. Depending on the
150 variable, the imputed value is derived by using either the level of GDPPCPPP in the base year or the
151 change in GDPPCPPP between the base year and the nearest available year for which the imputed
152 series has a value in the country being filled in.

153 It is possible to construct a grade-specific distribution of students for the current year using available data
154 on entrance, dropout, and enrollment rates for the entire level—provided these rates are assumed to be
155 the same across all cohorts currently in school. Building on this assumption, the full-flow reconstruction
156 method uses available values for these rates to estimate a missing flow rate when others are known. The
157 method is also used to ensure internal consistency when all flow rates are available—either from data or
158 other imputation techniques.

159 When inconsistencies arise—particularly at the upper secondary and tertiary levels where grade-specific
160 data are not available—values derived from historical data are prioritized over imputed values. Among
161 available rates, conceptually clearer indicators such as enrollment are generally preferred over others,
162 such as survival; similarly, intake rates are favored over survival rates.

163 For primary and lower secondary levels, where grade-specific data are available, the flow reconstruction
164 method is used to derive level-specific rates when only one of the flow-rate values is missing. When
165 multiple values are missing, cross-sectional estimation is first used to impute all but one, and the
166 reconstruction method is then applied to estimate the final missing value. These level-specific flow rates
167 are subsequently reconciled with the grade-level data initialization.

168 For primary and lower secondary levels, grade-level enrollment data is available as headcounts, which
169 we use in conjunction with single-year population data to compute grade-specific enrollment rates. If data
170 for only one grade is missing in a country, it is estimated using available data for all other grades and the
171 previously filled total enrollment for that level. If multiple grades are missing, different estimation
172 techniques are applied: the last grade is estimated using completion and survival rates, while the first
173 grade is estimated using entrance or transition rates. For other missing grades, a linear trend based on

174 available grade-level data is used to interpolate values. If no grade-specific data exists, flow-rates for all
175 grades are initialized algorithmically using the same method described earlier in this section to compute
176 grade distributions from level-wide flow rates and level durations.

177 For grade-specific dropout rates, we use regression functions driven by GDP per capita. Additionally,
178 dropout rates for all grades must be consistent with the survival rate to the last grade (or the graduation
179 rate for lower secondary), which allows us to derive the dropout rate when only one grade is missing. The
180 survival rate and grade-specific dropout rates also serve as a consistency check for estimated dropout
181 values.

182 Since both grade-specific and level-specific data come from the same source, they are usually aligned.
183 However, reconciliation is sometimes needed for level-specific flow rates involving a single grade or
184 single-year age group—such as entrance or completion rates—which may occasionally misalign with their
185 grade-specific equivalents, like enrollment in the first and last grades. In such cases, we check whether
186 the grade-specific or level-specific data has been imputed and prioritize reported data over imputed
187 values. If both are imputed, we retain the grade-specific imputation. We follow a similar approach when
188 reconciling the sum of grade-specific dropout rates with the survival or graduation rate for the level. In
189 some cases, when there is a significant discrepancy between the two values being reconciled, we take
190 the midpoint as a balanced estimate.

191 WIC and B-L estimate attainment series ((9, 10, 16) using population and education data, but these series
192 are typically only reported up to about 5 to 10 years before the regularly advancing base year of IFs, most
193 recently 2020. Given that educational attainment grows slowly and follows a predictable pattern, we
194 extend them to the base year using longitudinal extrapolation for each country's trajectory.

195 Per-student public costs at each of the four education levels are reported as shares of per capita income
196 (GDPPCPP) by UIS(8), facilitating comparisons of national commitments to education and learning
197 quality. IFs uses cross-sectional regressions, based on the most recent data and driven by per capita
198 income (GDPPCPP), to estimate missing values.

199 Once we construct a complete set of initial data points for all countries and variables, the model is ready
200 to generate forecasts using dynamic projections. In the next sections, we describe these dynamic
201 behaviors for student flows and education financing and educational attainment.

202 **4. Student Flow Model**

203 The IFs education model projects enrollment, graduation, and other schooling flow outcomes by gender
204 for each country across four education levels: primary, lower secondary, upper secondary, and tertiary.
205 The fundamental unit in the schooling model is a grade, with each level comprising multiple grades. The
206 model tracks students as they enter primary school and progress through grades, where they can either
207 advance, repeat, or drop out due to personal circumstances or systemic failures.

208 The model simulates student flows grade by grade, initializing each grade with grade-specific enrollment
209 and dropout rates—using historical data for primary to lower secondary levels, and distributions derived
210 from student-flow reconstruction for other levels, as described in an earlier section. Each year, grade-level
211 enrollment is updated by carrying forward students from the previous grade, adjusting for dropouts and
212 repeaters. The first grade at each level accounts for new entrants, either through fresh intake (first entry
213 into the system) or transition from the previous level, while the last grade reflects graduation or
214 completion rates. Student flow rates, when multiplied by the relevant age-group population, yield student
215 counts.

216 The key dynamics of the student flow rates are determined using analytical functions, typically derived by
 217 regressing the most recent flow rate data against common development indicators such as real GDP per
 218 capita at PPP. As noted elsewhere in the SI, the flow rates they produce are subsequently adjusted, as
 219 needed, based on education expenditure. These functions are estimated separately by gender to account
 220 for differences in educational progress between girls and boys and are also used to impute missing data
 221 for most student flow variables. Figure S3 illustrates two such functions—net intake rates in primary
 222 education for boys and girls—plotted against GDP per capita in 1000 PPP (2017) dollars.

223 Flow rates are used to compute future grade-level enrollments, which are initialized in the base year
 224 using either reported data or the reconstructed flow methods described earlier. These enrollments evolve
 225 over time through a flow accounting process. Below, we illustrate this using the equation for primary
 226 grade-level enrollment (*pristudents*), where the subscripts *g*, *r*, *t*, and *p* denote grade, country, time period,
 227 and gender, respectively. Inflows include new entrants and students promoted from the previous grade
 228 (*pristudents_{g-1, t-1}*), while outflows account for promotions to the next grade, dropouts
 229 (*EdPriDropoutByGrades*), or graduations. Students who repeat (*RptGr*) a grade remain in the enrollment
 230 stock for that grade in the following year.

231
 232
 233

$$234 \quad pristudents_{g,p,r,t} = pristudents_{g-1,p,r,t-1} * (1 - EdPriDropoutByGrade_{g-1,p,r,t} - RptGr_{g-1,p,r,t}) \\ + pristudents_{g,p,r,t-1} * RptGr_{g,p,r,t} \quad (1)$$

235
 236
 237

$$238 \quad EDPRIENRG_{g,p,r,t} = \sum_{g=1}^{edprilen_r} pristudents_{g,p,r,t} \quad (2)$$

239
 240

241 These grade-level dynamics are computed year by year, and total enrollment for each education level
 242 (e.g., *PRIENRG* for primary) is derived by summing enrollments across all relevant grades. Student
 243 outflows—through graduation or dropout—are used to update the educational attainment of the
 244 appropriate age group. Figure 4 presents a representative schematic of the integrated student flows and
 245 the attainment stocks they update, which we describe in a later section.

246
 247
 248
 249
 250
 251
 252
 253

254 IFs scenario parameters provide flexibility to simulate varying rates of student progression, allowing for
 255 faster or slower educational advancement depending on policy interventions, economic conditions, or
 256 other external factors. These variations ultimately shape enrollment patterns over time, as illustrated in
 257 Figure S5 for the SSP3 scenario used in our paper. The total enrollment serves as a key model output,
 258 informing various projections, including the demand for educational budgets, which we discuss in the next
 259 section.

254 5. Financial Flow Model

255 The IFs education model forecasts public funding of education using a demand-supply balancing
 256 approach, where demand is computed from total enrollment and per-student expenditures, while supply is
 257 determined by government budget constraints. Financial reconciliation is explained below. Any surplus or
 258 shortfall in public funding, relative to demand, affects student flows. Model users can simulate funding
 259 interventions using scenario parameters. The model does not currently include household spending on
 260 education.

261
 262
 263
 264

265 Education is labor-intensive. Most education spending goes toward teacher salaries and other personnel
 266 compensation rather than capital or materials (17). To capture this relationship, IFs projects public
 267 spending per student at each education level using regression functions driven by income per capita

265 (GDPPCPPP), reflecting the tendency for education costs to rise with national income as the opportunity
266 cost of labor increases. Country-specific variations in per student spending are accounted for by
267 computing the initial-year difference between actual data and estimates, which gradually converges to
268 zero as per-student expenditures align with global patterns.

269
270 Projected enrollment demand—derived from flow-rate dynamics—is multiplied by income-driven per-
271 student cost projections for each level of schooling and summed to estimate unconstrained funding
272 demand in each forecast year. This estimated demand is then subjected to overall funding constraints
273 during the budget allocation process within the IFs sociopolitical model.

274
275 In the budgeting process, public spending on education and other categories—such as health,
276 infrastructure, R&D, and defense—is estimated based on observed expenditure patterns for each
277 category relative to economic development. For sectors where demand-side projections of expenditures
278 are available (education, health, and infrastructure), user-adjustable priority parameters allow modification
279 of the emphasis placed on current demand versus historically driven spending patterns. An additional
280 user-defined multiplier, applicable to each spending category, provides further flexibility in adjusting
281 expenditure levels. Total available government consumption—calculated in the economic model by
282 balancing revenue and public spending—is then allocated across all categories. This allocation process
283 normalizes projected sectoral spending, after reserving shares based on the specified priority parameters.

284
285 The allocated education budget is then compared to projected funding demand. If there is a surplus, it is
286 allocated across levels based on the distance of each level from full enrollment, whereas in the case of a
287 deficit, the shortfall is applied uniformly across all education levels. The budget impact—measured as the
288 ratio of allocated to required funds— influences previously projected student flows. A funding surplus
289 enhances student flow rates related to entrance (intake or transition from the earlier level) and
290 progression (persistence/survival or graduation rate) non-linearly, with the greatest boost occurring when
291 flow rates are near the midpoints of their possible range of value. In contrast, funding deficits have a more
292 linear impact. Adjusted entrance, progression and exit flow rates are used to recompute enrollment
293 projections.

294
295 Model users can alter budgetary allocations either by directly modifying budgetary parameters within
296 scenarios or through adjusting flow rates, which in turn affect enrollment and ultimately impact the budget.
297 We took the latter approach. Figure S6 presents budget expenditures as a percentage of GDP for low-
298 income countries as a result of changes in student flows across the three SSP scenarios. These financing
299 and student flow patterns ultimately influence adult educational attainment, which we discuss next.

300

301 6. Educational Attainment Model

302

303 This paper uses mean years of schooling (MYS) among the population aged 25 and above as the
304 measure of adult educational attainment. In IFs, educational attainment is projected for all individuals
305 aged 15 and above, disaggregated into five-year age-sex cohorts. For a given population group, MYS is
306 computed by summing the average years of education obtained from both completed schooling and
307 partial completion. At each time period (t) for a country (r), the average years of education for the
308 population aged 15 and above (EDYRSAG15), disaggregated by gender (p), is calculated as the sum of
309 four components: average or mean years from completed primary education (AvgYearsPriEdPop),
310 completed upper secondary education (AvgYearsSecEdPop), completed tertiary education
311 (AvgYearsTerEdPop), and partial completion (PartialYearsEdPop) by individuals who dropped out before
312 graduating from any of these levels.

313

$$314 \quad EDYRSAG15_{p,r,t} = AvgYearsPriEdPop_{p,r,t} + AvgYearsSecEdPop_{p,r,t} \\ + AvgYearsTerEdPop_{p,r,t} + PartialYearsEdPop_{p,r,t} \quad (3)$$

315

316

317 Historical data from the Wittgenstein Centre (WIC) initialize completion rates for each five-year age-sex
 318 cohort. Completion rate projections from the IFs schooling flow model (e.g., EDPRICR for primary
 319 education) update these rates annually (e.g., EdPriPopPer for primary) for the appropriate age groups—
 320 primarily those aged 15–19 (cohort index $c = 4$) and 20–24—depending on the level of education.
 321

$$322 \quad EDPriPopPer_{c=4,p,r,t} = (4 * EDPriPopPer_{c=4,p,r,t-1} + EDPRICR_{r,p,t})/5 \quad (4)$$

323
 324
 325

326 For older five-year age groups, completion rates for various levels of schooling evolve as individuals age.
 327 Each year, individuals at the upper end of their five-year age group move to the next cohort, bringing their
 328 educational attainment with them. This attainment is subtracted from the originating group and added to
 329 the receiving one, and new completion rates are calculated for each age group and each level of
 330 education, as shown below for primary. For simplicity, the model assumes that individuals do not acquire
 331 additional formal education later in life.
 332

$$333 \quad EdPriPopPer_{c=5 \text{ to } 21,p,r,t} = (EdPriPopPer_{c-1,p,r,t-1} + 4 * EdPriPopPer_{c,p,r,t-1}) / 5 \quad (5)$$

334
 335

336 Multiplying age-sex-specific completion rates by the number of individuals in each five-year group
 337 ($agedst$) and the duration of the corresponding education level ($edprilen$) yields the total number of
 338 education years from completion. This total is then divided by the population to obtain the average years
 339 of education for all adults. This computation is carried out separately for completed primary, secondary,
 340 and tertiary education—as illustrated in the equation below for primary.
 341
 342
 343 .

$$344 \quad AvgYearsPriEdPop_{p,r,t} = \frac{\sum_{c=4}^{NCohorts} \frac{EDPriPopPer_{c,p,r,t} * edprilen_r * AGEDST_{c,p,r,t}}{100}}{\sum_{c=4}^{NCohorts} AgeDst_{c,p,r,t}} \quad (6)$$

345
 346 The population projections in IFs are done in the demographic component of the integrated model, which
 347 accounts for demographic flows such as births, deaths, and migration—as well as the impact of education
 348 on these dynamics, as described in the IFs demographic model. For this paper, we have overridden
 349 International Futures' projection of total population with those from the Shared Socioeconomic Pathways
 350 (SSP) database(18).
 351

352 Attainment years from partial completion of schooling at various levels are not reported separately in
 353 historical datasets. IFs initializes these values using base-year dropout rate data along with several
 354 simplifying assumptions. First, starting from the second grade ($d = 2$), the number of dropouts—calculated
 355 using the grade-specific enrollment rate ($Gr_Students$), dropout rate ($DropOutRate$), and relevant single-
 356 year population ($fagedst$) by age (c) and sex (p)—is multiplied by the number of years completed before
 357 dropping out. This process is repeated for all grades ($d = edprilen$) to obtain partial completion-related
 358 years for each level of schooling (e.g., $PartialPriPersYearsNew$ for primary). The results are then summed
 359 to estimate partial completion for five-year adult cohorts close to school graduation ages (i.e., 15–19 and
 360 20–24).
 361

$$362 \quad PartialPriPersYearsNew_{p,r,t} = \sum_{d=2}^{edprilen_r} Gr_{Students_{d,p,r,t}} * DropoutRate_{d,p,r,t} * (d - 1) * fagedst_{c,p,r,t} \quad (7)$$

363

364 A ratio of partial attainment to total attainment from primary completion among the 15–19 age group is
365 then used to initialize partial attainment for older five-year age-sex cohorts. For projecting partial
366 attainment in future years, the same dynamics are used as for completed attainment: current dropout
367 rates are used to update partial attainment for graduation-age cohorts, and a cohort propagation method
368 is applied to compute partial attainment for older age groups. Attainment from partial completions across
369 all education levels and age groups (PartialYearsEdPop) is added to the MYS calculation, as mentioned
370 earlier.

371 IFs derivation of MYS in the initial year, from various historical data and derivations, can be slightly
372 different from the reported historical data on MYS. IFs computes this initial difference and adds it to the
373 computed MYS.

374 **7. Scenario Development**

375
376 For this paper, we selected SSP2 (middle-of-the-road) and two SSPs (SSP3 and SSP5) that span a range
377 of assumptions about the prospects for education. According to the SSP scenario narratives, education
378 investments progress slowly in SSP2, decline in SSP3, and are strong in SSP5, as described in pages 172–
379 175 of ref. (19). SSP1, which assumes low mitigation and adaptation challenges, suggests an educational
380 investment trajectory similar to SSP5. SSP4's educational outcomes vary by fertility and income grouping
381 (p. 176 of ref. (19)), potentially requiring more country-specific scenario construction than the global
382 approach we employed. Given these considerations, we ultimately focused on SSP2, SSP3, and SSP5 to
383 frame the uncertainty in global educational outcomes under alternative SSPs.
384

385 Our primary variable of interest in the article's analysis is educational attainment, which we analyze across
386 the three SSPs. We compare forecasts resulting from the different modeling approaches of IFs and WIC
387 (20). As previously explained, educational attainment in IFs is linked to schooling flow outcomes, with the
388 changes coming from ~~—~~ school completion or partial completion once attainment is initialized with historical
389 data. So, we implement the high and low education SSP scenarios (SSP5 and SSP3, respectively) by
390 modifying student flow rates at all levels. These flow rates are linked to demographic and economic
391 variables as explained earlier. For a proper comparison between our schooling-based attainment
392 projections and those from the SSP database, we also exogenously incorporate the corresponding
393 population and economic growth projections from the SSP database into our scenarios (18).
394

395 Although IFs can respond to both student flow and schooling system financing interventions, we used only
396 student flow parameters in this analysis. The model adjusts financing demands accordingly. As we
397 described earlier, education spending remains subject to constraints posed by government expenditure
398 capacity and competing public sector demands. In the SSP5 high-investment education scenario, the model
399 ensures the largest possible education investment given the enrollment need. The specific student flow
400 parameters used in SSP5 and SSP3 are described next.
401

402 In SSP2, student flow rates follow IFs base-case education projections, with only population and GDP
403 growth taken from the SSP database(18). As described in Materials and Methods in the main text, for SSP5
404 and SSP3, two flow rates at each schooling level—one related to entry into the level (entrance/intake or
405 transition from the level below) and one related to progression within the level (persistence to the last grade
406 or graduation)—are adjusted to ensure that they span a wide but plausible range as compared to historical
407 experience. The adjustment is implemented using multipliers that equal one in the base case and vary
408 above or below one in scenarios, modifying projections of these rates subject to model constraints.
409 Multipliers can change over time and by country; here we applied uniform values across countries,
410 increasing gradually over time for SSP5 and decreasing gradually for SSP3. The eight student flow
411 parameters across four schooling levels, listed in Table S2, were set to align projections with historical data
412 as described next.
413

414 We calculated annualized changes in country-level growth rates for each entrance and progression/exit
415 flow at all four education levels, using data from 2005–2020 but only where observations were at least 10

416 years apart. These growth rates were summarized in box plots to identify averages and top/bottom quartiles.
417 The upper quartile served as the target for the median growth rate in SSP5, and the lower quartile for the
418 median rate of decline in SSP3. Multipliers were set such that distribution (across countries) of growth rates
419 in the student flow rates over the period 2020–2035 approximately matched the target in the historical
420 distribution. Figure S7 shows box plots of the final growth rate distributions of student flow rates for the
421 historical period and for the first 15 years of the three scenarios, covering all flow and enrollment rates
422 across education levels. Table S2 reports the final multiplier values.
423

424 **8. Replication**

425 The manuscript uses International Futures System (IFs) modeling platform. IFs can be downloaded from
426 <https://ifsfiles.du.edu/>. The scenarios and model run files available [here](#) contain the results used here.

427 The instructions for installation of IFs, running scenarios and/or loading run files and displaying results
428 can be found in the IFs wiki(1).

References

1. Pardee Institute, International Futures (IFs) - Pardee Wiki. (No Date). Available at: [https://pardeewiki.du.edu/index.php?title=International_Futures_\(IFs\)](https://pardeewiki.du.edu/index.php?title=International_Futures_(IFs)) [Accessed 25 August 2025].
2. A. Wils, R. O'Connor, The causes and dynamics of the global education transition. (2003).
3. E. Delamonica, S. Mehrotra, J. Vandemoortele, Is EFA Affordable? Estimating the Global Minimum Cost of 'Education for All.' *Innocenti Working Paper* (2001).
4. B. Bruns, A. Mingat, R. Rakotomalala, *Achieving universal primary education by 2015: a chance for every child* (World Bank, 2003).
5. S. KC, *et al.*, Projection of populations by level of educational attainment, age, and sex for 120 countries for 2005-2050. *Demographic Research* **22**, 383–472 (2010).
6. W. W. McMahon, *Education and Development: Measuring the Social Benefits* (Oxford University Press, 2002).
7. M. Roser, E. Ortiz-Ospina, Education Spending. *Our World in Data* (2016).
8. UNESCO Institute for Statistics (UIS), UIS Data Browser. UIS Data Browser. Deposited No Date.
9. Wittgenstein Centre, Wittgenstein Centre Human Capital Data Explorer. Deposited 2024.
10. Wittgenstein Centre, Wittgenstein Centre Human Capital Data Explorer. Deposited 2018.
11. *International Standard Classification of Education (ISCED) 2011* (UNESCO, 2012).
12. United Nations, World Population Prospects, Online Edition. Deposited 2022.
13. World Bank, *World Development Indicators* (World Bank, 2024).
14. World Bank, Education Statistics Portal.
15. International Monetary Fund, World economic outlook database.
16. R. J. Barro, J. W. Lee, A new data set of educational attainment in the world, 1950–2010. *Journal of Development Economics* **104**, 184-198 0304-3878 (2013).
17. OECD, *Education at a Glance 2023: OECD Indicators* (OECD, 2023).
18. IIASA and contributing modeling teams 2024, SSP Scenario Explorer. Deposited July 2024.
19. B. C. O'Neill, *et al.*, The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. *Global Environmental Change* **42**, 169-180, (2017).
20. S. K.C., *et al.*, "Updating the Shared Socioeconomic Pathways (SSPs) Global Population and Human Capital Projections" (International Institute for Applied Systems Analysis (IIASA), 2024).
21. UNESCO Institute for Statistics, Education Non Core Archive February 2020. UIS Bulk Data Download Service. Deposited No Date.

Figures

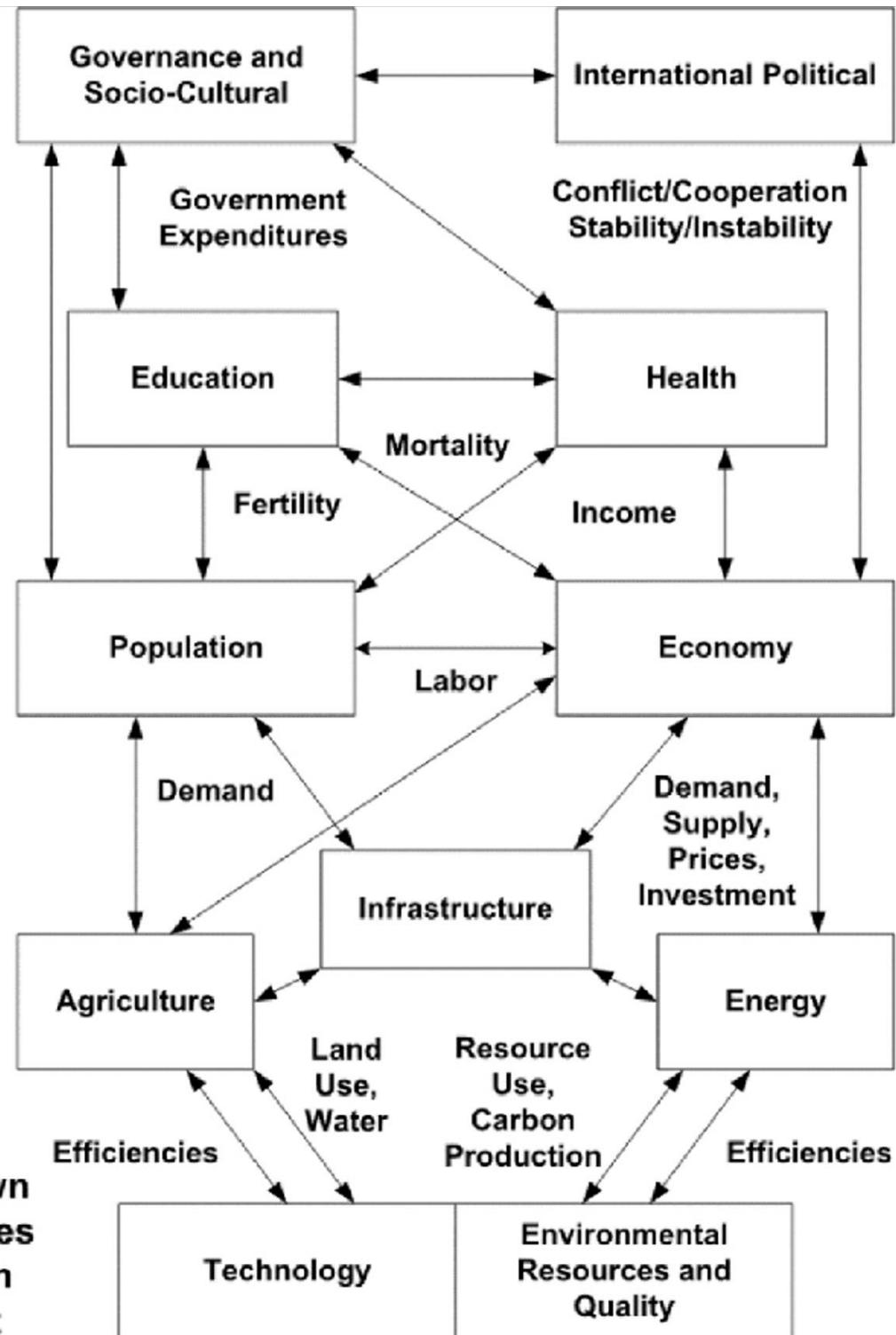


Figure S1 International Futures Models

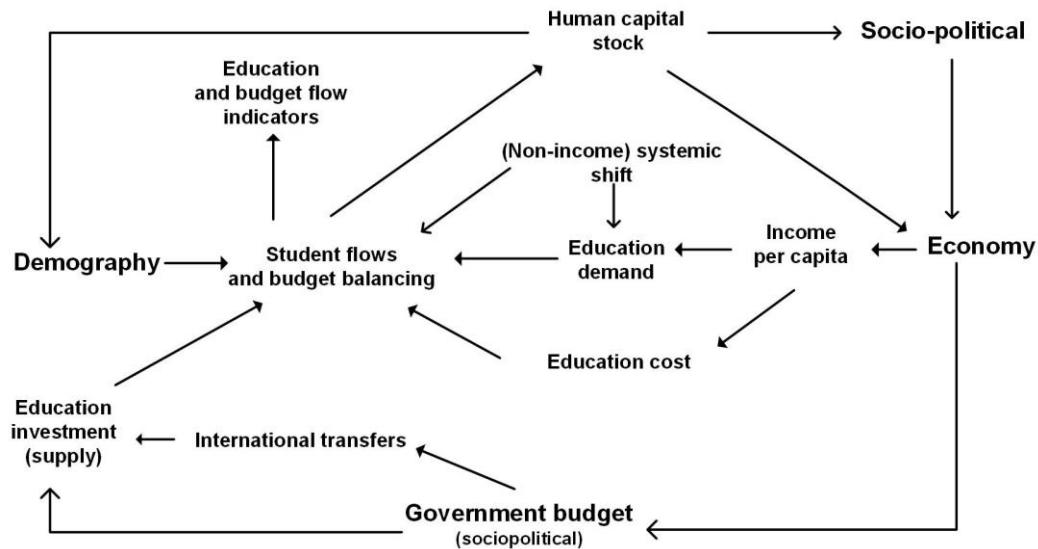


Figure S2 International Futures Education Model

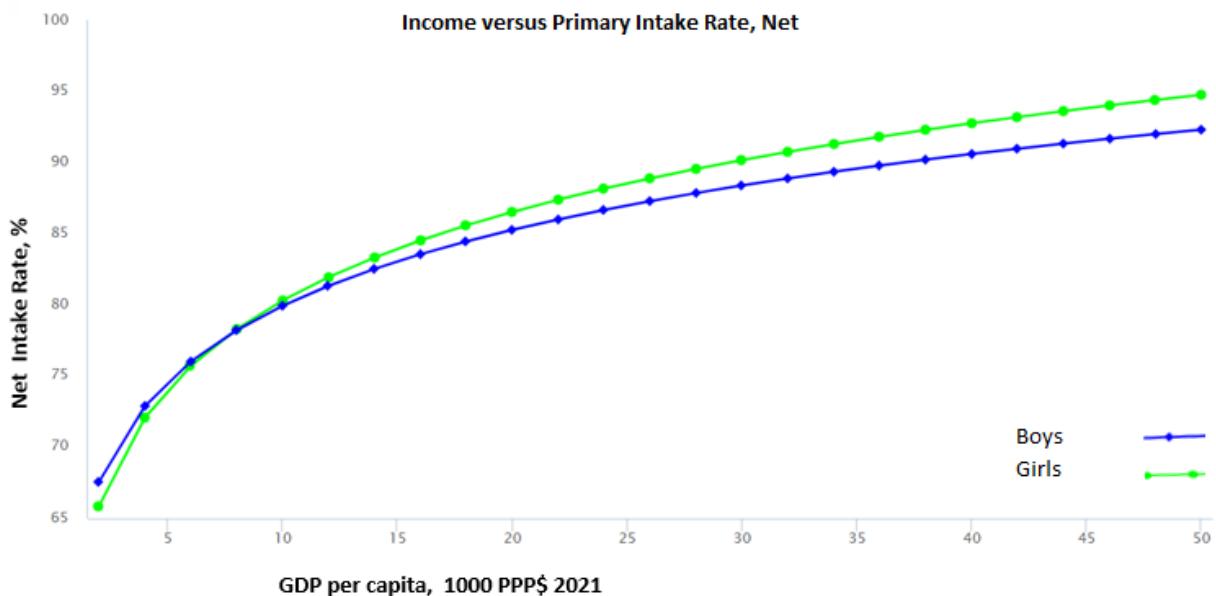


Figure S3: Plot of net intake rate in primary education (female and male) on GDP per capita (2021 PPP), using most recent data available

**IFs Education Model:
Schooling to Attainment**

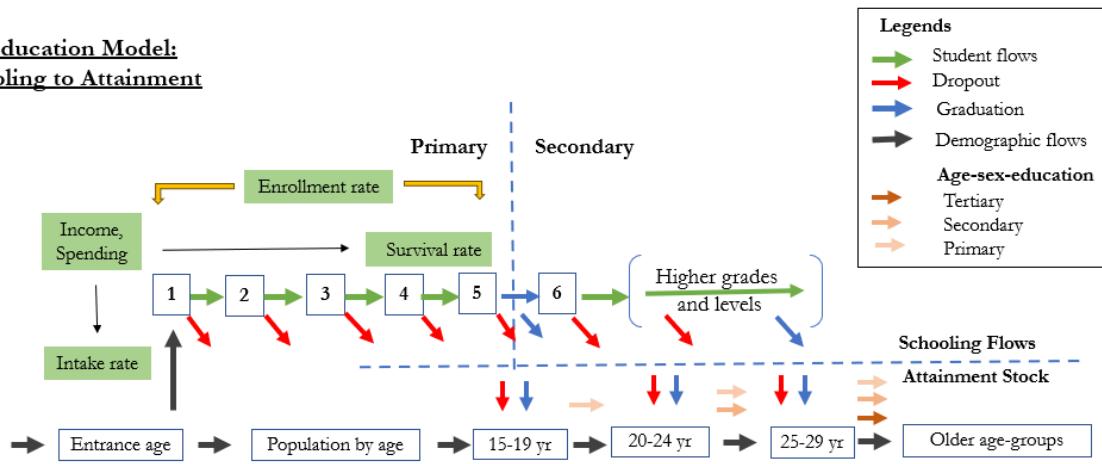


Figure S4. Schematic diagram of progress through education with linkages to drivers and adult attainment.

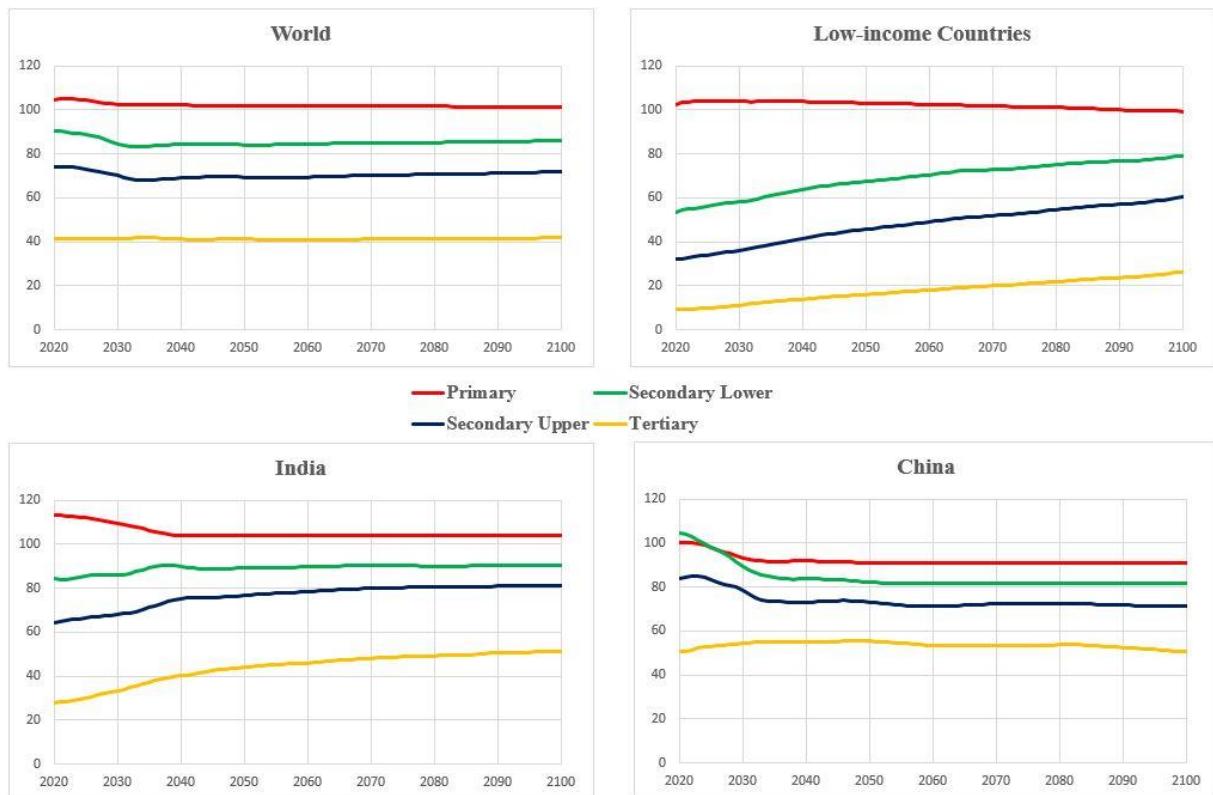


Figure S5: Gross enrollment projections for all four levels: World, LICs, China, India for SSP3

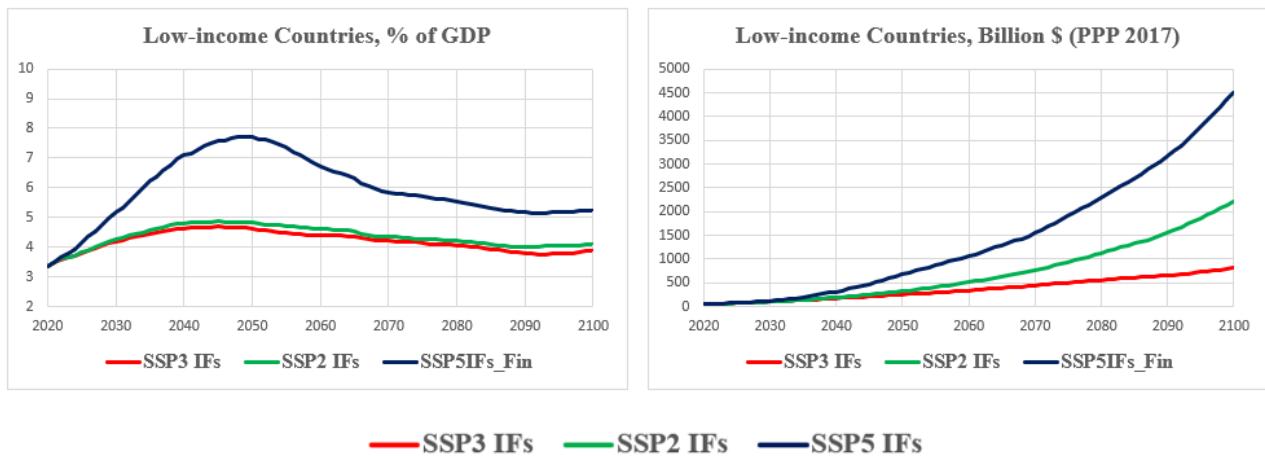
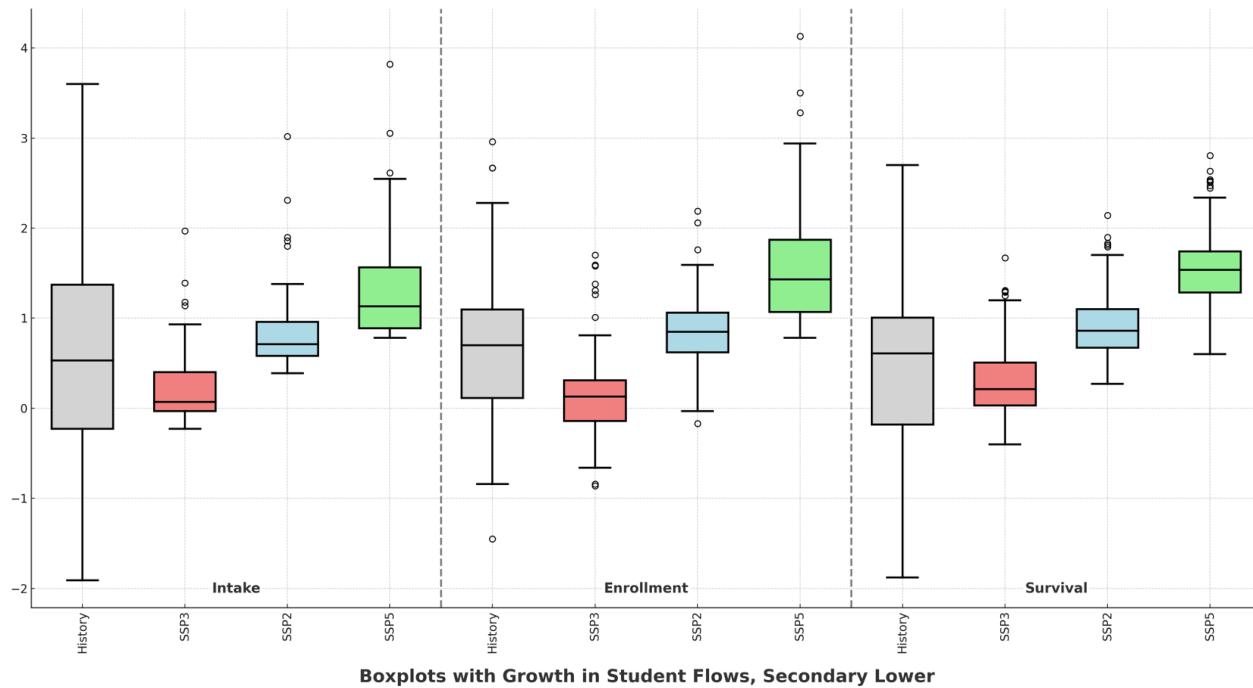
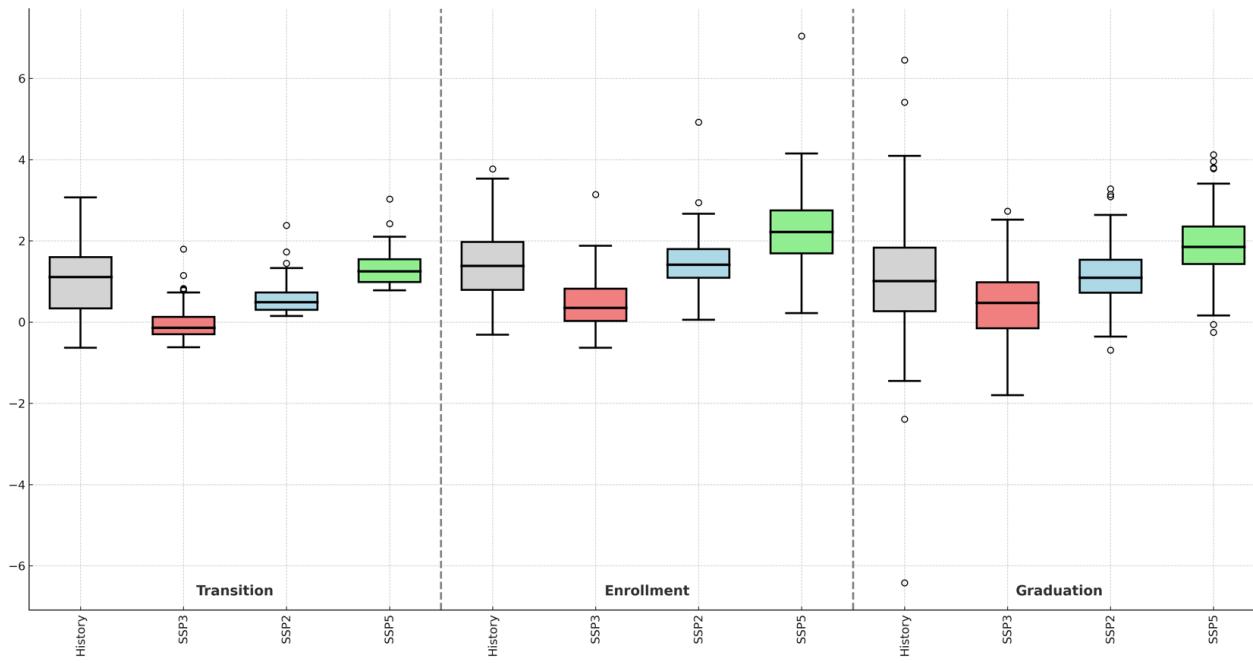
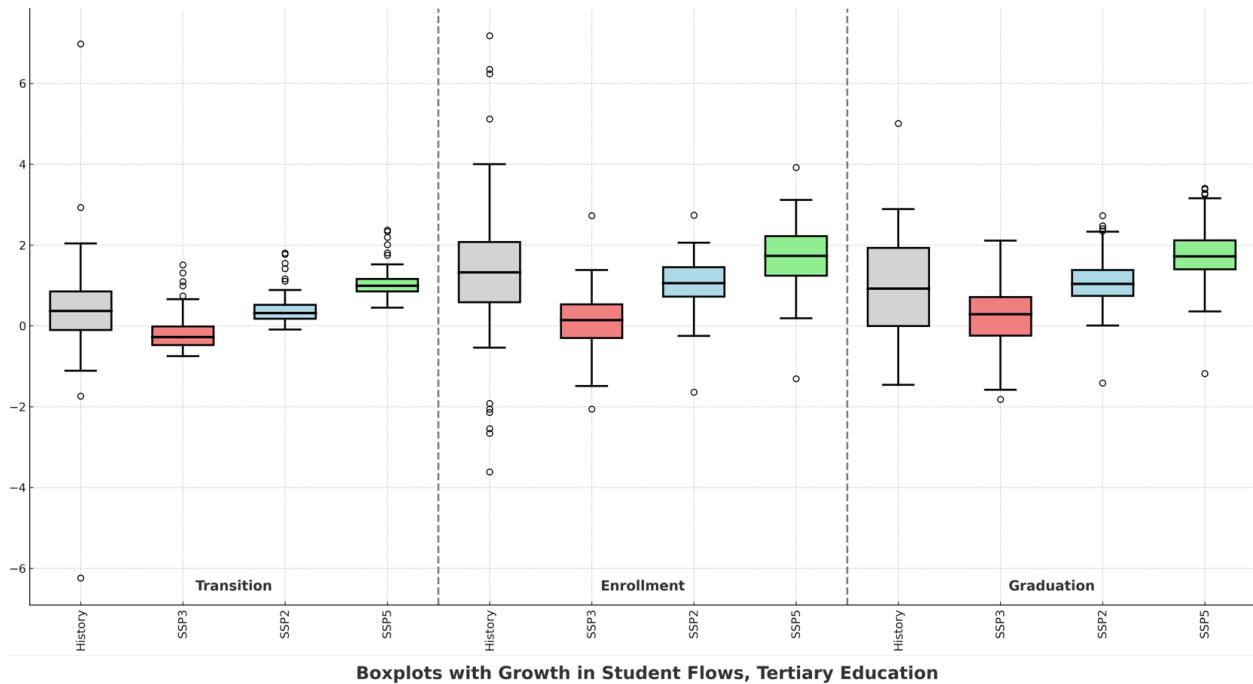




Figure S6: Government spending in education: Low-income Countries; all three SSPs


Boxplots with Growth in Student Flows, Primary Net

Boxplots with Growth in Student Flows, Secondary Lower

Boxplots with Growth in Student Flows, Upper Secondary

Boxplots with Growth in Student Flows, Tertiary Education

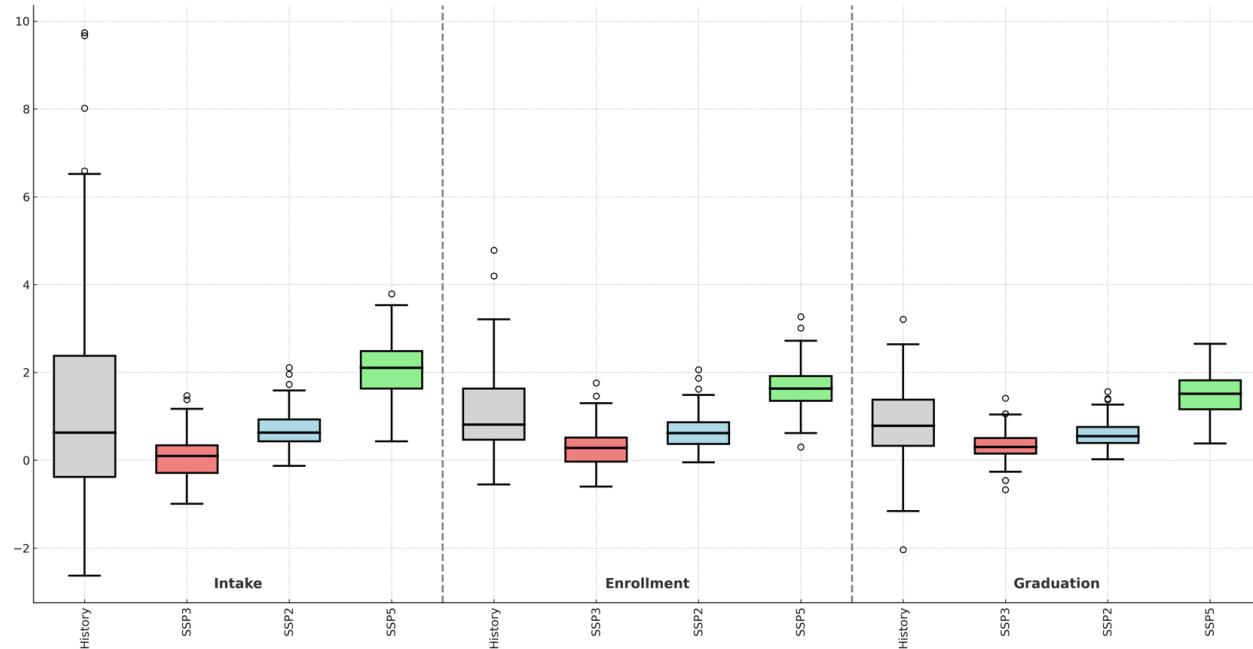


Figure S7. Boxplots of annualized growth rates in student flow rates, comparing historical data and the three SSPs

Tables

Table S1: Data sources for variables used in IFs education model

Variable	Unit	Data Source
Primary Education		
Intake Rate, primary, gross and net	% of entrance-age population	(8)
Enrollment Rate, primary, gross and net	% of relevant school-age population	(8)
Survival Rate, Primary	% of first grade entrants	(8)
Completion Rate, Primary	% of graduation-age population	(8)
Enrollment by grade, Primary	Number of students	(21)
Dropout rate by grade, Primary	% of grade enrollment	(21)
Duration of Primary	Year	(8)
Lower Secondary		
Transition Rate, Primary to Lower Secondary	% of last graders in primary	(8)
Enrollment Rate, Gross, Lower Secondary	% of relevant school-age population	(8)
Graduation Rate, Lower Secondary	% of graduation-age population	(8)
Enrollment by grade, Lower Secondary	Number of students	(21)
Dropout rate by grade, Lower Secondary	% of grade enrollment	(21)
Vocational Share, Lower Secondary	% of level enrollment	(8)
Duration of Lower Secondary	Year	(8)
Upper Secondary		
Transition Rate, Lower Sec to Upper Sec	% of last graders in lower sec	(8)
Enrollment Rate, Gross, Upper Secondary	% of relevant school-age population	(8)
Graduation Rate, Upper Secondary	% of graduation-age population	UIS (2025b)
Vocational Share, Upper Secondary	% of level enrollment	(8)
Duration of Upper Secondary	Year	(8)
Tertiary Education		
Intake Rate, Gross, Tertiary	% of entrance-age population	(8)
Enrollment Rate, Gross, Tertiary	% of relevant school-age population	(8)
Graduation Rate, Tertiary	% of graduation-age population	(8)
Education Finance		
Government Spending on Education	% of GDP	(13)
Per Student Public Expenditure (Primary, Lower Secondary, Upper Secondary, Tertiary)	% of GDP per capita	(8)
Educational Attainment		
Mean years of schooling (Age 25+, Age 15+)	Year	(9, 10)
Completion rates, adult 5-year age-groups, primary, upper secondary, tertiary	Percent of age-group	(9, 10)
Economic and Demographic		
GDP per capita at PPP	2017 PPP Dollar	(13, 15)
Population: total, by age-group	Million	(12)

Table S2: IFs SSP scenario parameters

No	Level of education	Parameter Name	SSP3 Target (Year)	SSP5 Target (Year)
1	Primary	Net intake rate	.9 (2030)	1.2 (2035)
2	Primary	Survival rate to last grade	.9 (2030)	1.2 (2035)
3	Lower Secondary	Transition rate	.9 (2030)	1.2 (2035)
4	Lower Secondary	Graduation rate	.9 (2030)	1.2 (2035)
5	Upper Secondary	Transition rate	.9 (2030)	1.2 (2035)
6	Upper Secondary	Graduation rate	.9 (2030)	1.2 (2035)
7	Tertiary	Intake rate	.8(2040)	1.4 (2035)
8	Tertiary	Graduation rate	.8(2040)	1.4 (2035)

(Note: *Parameter values are same for all countries. They are set to 1, their default value, in SSP2 (base case). In SSP3 (SSP5), they gradually decrease (increase) to the target value by the specified year and remain at that level thereafter. This reflects an effort to stagnate (accelerate) enrollment relative to the SSP2 middle-of-the-road trajectory.*